
Building Digital Cities

by David Colleen
Planet 9 Studios, Inc.
San Francisco, California

draft March 12, 2002

Introduction

Computer simulation of realistic urban environments started about twenty years ago. In the
past two years, computer game technology wedded to low cost advances in graphics
hardware has lead to the ability to display high resolution, real-time cities on consumer level
computers. The Internet has given us the means to share these datasets on a worldwide
basis and to embed new functionality and linkages to other types of external data. We need
an organized means to build and share these “digital cities”.

Purpose of this paper

For years there has been much discussion and development focused around 3D terrain
simulation stemming from military simulation needs. Since military doctrine precluded fighting
wars in cities, little effort was expended in simulating urban environments. The conflict in
Somalia is often cited as the turning point as military planners realized that we would continue
to be faced with the prospect of having to fight in urban zones. This coupled with growing
concerns about global terrorism have caused a refocusing of efforts to simulate our cities.

It is the purpose of this paper to set out techniques for building high performance 3D urban
environments as well as to suggest some standards to aid in data her. I should note that there
is another arena of city building revolving around automated collection techniques using
stereo pair photography, laser scanning, etc. While those techniques show promise, they do
not yet yield sufficient fidelity for most of our uses. This paper will instead focus on high
precision hand modeling techniques that have been the province of architects and computer
game makers.

Assumptions

For the purposes of this paper, I will assume that the reader has a good understanding of the
Internet and has a working knowledge ob 3D tools and concepts. While there are many fine
3D authoring tools and real-time display formats, for the purposes of this paper, I will refer to
authoring in 3D Studio Max (the leading 3D authoring tool), metadata storage in XML and
VRML 97 (the ISO standard for real-time 3D on the Internet).

Building Real Time City Models

In creating an urban dataset, there are some clear objectives:

• Create the highest sense of realism while,
• Maintaining an acceptable frame rate that,
• Uses a data structure that is comprehendible by others and that,
• Can be added to by others and that is,
• Compact in size for transmission via the Internet.

When we first began building city models for Internet use, we limited the files to 2,500
polygons. Today with improvements in hardware, software and Internet transmission speeds,
we regularly use models over 100,000 polygons. Each year we find that rules for model
building change with rapid advances in technology. Each rendering platform also has
strengths and weaknesses that can be exploited with careful model building and data
structuring. In spite of the difficulties in addressing a “moving target” topic I will offer some
useful generalities for real-time model building.

Pre-Planning

Each model building project should begin with a design document that states the project
objectives, design criteria and technical constraints. Some of the questions that should be
addressed are:

• What is the polygon budget?
• What is the design platform?
• What is the texture budget?
• Who are the target users?
• What are the file size constraints?
• What is the design screen resolution?
• What is the rendering platform?

Here is an example of a typical polygon budget:

1. Ground Plane 10,000 polygons
2. Buildings 40,000 polygons (40 buildings @ 1,000 polygons / bldg. avg.)
3. Street Furniture 6,000 polygons (100 objects @ 60 polygons / object)
4. Landscaping 4,000 polygons (1,000 trees @ 4 polygons / tree)

This totals 60,000 polygons. Often polygon budgets get more detailed than the example
given.

Planning For Online Use

Deploying an urban dataset over the Internet requires careful consideration of user bandwidth
constraints and server responsiveness. It is important to understand what are practical wait
times for a user and how this translates into workable file sizes and the quantity of textures to
be used. In the days that we designed for users on 28.8 dial-up connections we had an
internal rule that dictated that no geometry file was to exceed 50k, no texture file could
exceed 11k and there was to be a maximum of 20 textures used. These standards seem
antiquated now except that as we are addressing technical limitations for hand held
computers, we find ourselves looking back to the older limits. In designing for T1 / DSL users
we have raised our limits to about 300k for geometry files, 60k for texture files with as many
as 100 textures.

Compression of geometry files is critical to maintaining small file sizes. VRML supports gzip
compression with no difference in performance. Compression rates vary, but we typically see
5:1 compression rates. It also helps to reduce file sizes with the help of an optimization tool
such as Chisel.

The overall number of textures used is significant relative to the overall texture memory used
but also for the number of “hits” that the server must address. It is helpful to try to reduce the
overall number of textures in a project but also to collage textures together into larger textures
to reduce the load on the server and to reduce the memory footprint on the client computer.
(See the section on texture collaging below.)

Low Polygon Geometry

Good Polygons

Cracks, Shared Vertex’s and Decimal Places

“T” Vertex’s

Quads and N-Gons

Some older 3D file formats define a polygon as having only three vertexes. Most modern
formats support polygons with four or more vertexes. It is more efficient to render a surface
containing 10 four sided polygons rather than 20 three sided polygons. The file size is also
slightly smaller. Where possible, quads and n-gons (polygons with five or more vertexes)
should be used.

Texturing to Simulate Detail

In the earliest days of real-time simulation, polygon budgets were extremely low forcing
modelers to rely on texturing to simulate detail that could not be built in 3D. Texture
resolutions were also limited due to download and display constraints. The tendency was to

use a single texture map for each side of a building. The limitations of this approach became
apparent as the viewer approached the building and saw enormous pixels.

Today, using modern engines, we are seeing polygon budgets for individual buildings
between 500 and 2,000 polygons and textures as large as 2048 x 2048. This has allowed us
to include medium sized building details and to begin breaking down facades into repitious
panels. For instance, a building with a repeated window panel may be comprised of four
texture variants randomly sprinkled over the buildings surface to achieve a more natural
appearance.. Sice individual textures cover a relatively small area, pixilation problems are
minimized. We are even occasionally adding individual buildings to scenes with polygon
counts in the 50,000 to 300,000 range.

Pre-Lit Texturing

Mip-Mapping

Mip-mapping is a technique used to replace texture maps with progressively lower resolution
textures as the view moves away from the textured object. This reduces the overall memory
footprint of the scene and consequently increases the frame rate. Modern graphics cards
perform this function automatically if the original texture adheres to mip-map texture
dimensions. Mip-mapable dimensions are based on the power of 2 such as 16, 32, 64, 128,
256, 512, etc. With most rendering engines, textures can be rectangular.

It is often a difficult conceptual leap to take a pristine building façade texture map and modify
the overall aspect ratio to conform to mip-map dimensions. (i.e. A 640 x 480 texture is re-
sized to 512 x 512.) It helps to remember that the rendering engine is already distorting
textures to appear in perspective. The additional distortion required to resize a texture to mip-
map dimensions yields no visible image degradation and significant performance
improvement.

Collaging

Memory footprint … download time

Texture Compression

Color by Vertex

Minimizing Hidden Geometry

Using Normals to Advantage

By definition, polygons are opaque on one side and transparent on the other. Most of our data
represents a shell so it is OK to be transparent on the side that will never be viewed.
Occasionally, we may wish to have a polygon be opaque on both sides. This can me

achieved by using the “solid FALSE” tag within the VRML IndexedFaceSet description or by
using a “2-sided material” if authoring in Studio Max. Making a polygon opaque on both sides
doubles the rendering load for that object, so please use this feature sparingly.

Imposters

Imposters are flat, texture mapped polygons that are meant to represent a more detailed
object. There are several types of imposters; scrims, billboards and x-objects. A scrim is a
background diorama that represents objects in the distance. Scrims may represent foliage, a
city skyline or a store interior. Billboards are flat, textured polygons that rotate to always face
the viewer. This is useful for trees and statues. X-objects are usually two or three intersecting
planes used to represent trees (“x-trees”). A few systems also support dynamically generated
imposters to replace distant geometry. This is not yet a mainstream approach.

Levels of Detail (LOD’s)

In the earliest days of simulation, display platforms were highly constrained by the overall
number of polygons within the view frustum. LOD systems were invented to counteract this
limitation by using multiple models of the same object, built at different resolutions. With
LOD’s, progressively more detailed models are displayed as the viewer gets closer to an
object. This has the benefit of reducing the overall scene polygon count. It also has the
negative aspect of increasing the overall file size and increasing the authoring time. In recent
times, with more robust display platforms, we have actually noticed performance reductions in
models using LOD’s. I encourage the author to become familiar with the strengths and
weaknesses of the rendering engine to be used.

A new generation of LOD type geometry systems has appeared called multi-resolution
geometries. Multi-resolution geometries work in two ways. Multi-resolution geometries can
automatically reduce the resolution of distant objects to maintain a consistent frame rate or
polygon count within the scene. Well done systems are able to maintain proper texturing and
object profiles without the appearance of seams, swimming or popping as is inherent in
traditional LOD schemes. The other way that multi-resolution geometries are used is with
streaming systems online.. In this scheme, a low-resolution proxy is initially loaded in the
scene. Progressively higher resolution is displayed over time as additional detail is
downloaded. VRML viewer developers are just beginning to address the use of these
technologies. Eventually, they may replace traditional LOD schemes altogether.

Elevation Grids

Primitives

Many programmers feel that objects define by primitive shapes, such as cubes, spheres,
cones, etc., run faster than polygonal shapes. While using primitives saves somewhat in file
size, our bench tests show primitives to run significantly more slowly than their polygonal

counterparts.

Extrusions

Indexed Line Sets

Collision

Data Structure

Scene Management Techniques

Data Optimization

Publishing the Data

Summary

Future Topics to Consider:

1. Data Validation.
2. Date tagging and time lapse simulation.
3. Automated collection techniques.
4. Needed areas of future technology development.
5.

Appendix A

A Proposed Resolution Classification System

Several years ago, the military developed a classification system for the resolution of terrain
data called DTED (digital terrain elevation data). To date, no standards have evolved to
classify urban data. There are several pertinent aspects that characterize the resolution of an
urban dataset, such as texture resolution, building detail and overall scene detail. I would like
to propose the following classification system based on DCD (digital city data):

Item DCD0 DCD1 DCD2 DCD3 DCD4
Texture Resolution 1m. 50cm. 25cm. 10cm. 5cm.
Building Detail 10m. 5m. 1m. 50cm. 10cm.
Street Detail Flat Curbs Curbs Curbs Curbs & Cuts

Landscaping Detail
 Trees Billboard X-Trees X-Trees X-Trees w/Trunks Polygonal
 Shrubs Scrim X-Bush xx

 Shrubs Scrim X-Bush xx
 Topo Features Slight xx xx

 Pathways Major All All w/ Curbs

 Fountains

 Statues Billboard Billbd. w/Base Polygonal Polygonal

 Walls & Steps Basic W/ Ramps W/ Ramps W/ Steps

Street Furniture Detail

 Traffic Signs Yes Yes Yes
 Traffic Signals Yes Yes Yes Yes
 Street Signs Generic Readable Readable Readable

 Waste Receptacles Yes Yes
 Benches Yes Yes
 News Stands Yes Yes Yes
 News Boxes Yes Yes
 Street Lights Yes Yes Yes Yes

Texture resolution is stated in meters describing the approximate size of a pixel displayed on
a building façade.

Building detail refers to the size or granularity of details modeled. As an example, DCD0
buildings would be basic boxes; DCD1 buildings would include setbacks and stepping; DCD2
buildings would add columns and mechanical penthouses; DCD3 buildings would have
cornices and bay windows and DCD4 buildings would have window mullions and recessed
doorways.

Appendix B

Planet 9 Studios Naming & File Structure System

Object Naming - Most geography based display systems have been built on cells defined by
latitude and longitude. Our business needs over the years have been focused on cities and
their buildings. It would have been possible for us to use a lat/lon convention for the naming
and structuring of our cities but it would have been quite un-intuitive and difficult to implement.
Instead, we choose to develop a system based on place names and property descriptions.
Here is an example:

• California (state)
• Bay Area (region)
• San Francisco (city)
• Financial District (neighborhood)
• Block # (city designation)

• Lot # (parcel)

As with most structured systems, there is a need to handle exceptions. For instance, in San
Francisco, the waterfront buildings located on piers do not have lot and block numbers. In this
case, we have simply named objects by their well know names such as “Pier 45”.

Texture naming – Our texture naming is directly derived from the Object Naming scheme
above. A typical texture name would look like this: 123456w.jpg where 1234 = block, 56, = lot
and “w” is a modifier, in this case indicating a west facing elevation. Here are some more of
our standard modifiers:

• n, s, e, w, = north, south, east and west facing elevations.
• na, nb = this would indicate multiple north facing elevations.
• x = transparency map
• b = bump map
• e = environment map
• s = shininess map
• i = illumination map

Increasingly, real-time engines are supporting multi-texturing. We may find new mapping
types over time. There are also novel uses of existing texture formats such as using the alpha
channel for illumination information rather than for transparency. It is also common to collage
texture together to improve performance. In these cases we often combine the textures for an
entire block into one texture. In this case we use the block number alone as the texture name.

Case Sensitivity -

Data Hierarchy -

Suggested Reading

Online Resources

Glossary

